

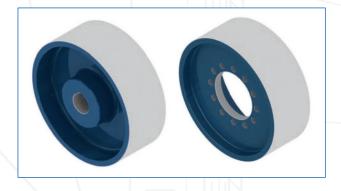
INDUSTRIAL BRAKES · THRUSTERS · PRESSURE OIL UNITS · COUPLINGS · HYDRAULIC BUFFERS CELLULAR BUFFERS · RAIL CLAMPS · STORM PROTECTION · SHEAVES · REPAIR · SERVICE

Linings

Drum brake linings according to DIN 15 435 part 3 for agriculture and industrial applications. The friction material is asbestos free, flexible with caoutchouc/ synthetic resin and metal fibre coating or as woven brake lining, impregnated, flexible, light brown, asbestos free. To bond or to rive. Design in form E, compression-molded or as flexible bulk stock.

Design:

- HWN
- HWN-N
- **○** HWN-12
- HKL
- Special linings



Brake Shoes

Brake shoes according to DIN 15 435 part 2 for drum brake according to DIN 15 435 part 1.

Design:

- Of aluminum with steel bushings without holes
- Of aluminum with steel bushings with holes
- Of steel without holes
- Of steel with holes
- Special brakes shoes

Brake drum

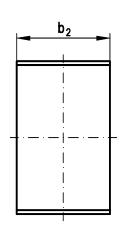
Brake drums according to DIN 15 431 for drum brakes according to DIN 15 435 part 1. Design with and without hub. For elastic couplings and for pin type couplings.

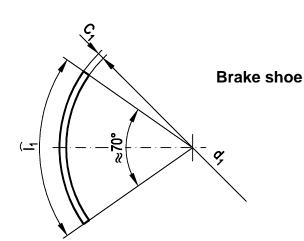
Design:

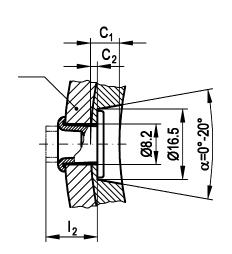
- Of GGG40 manufactured from solid
- Of C45 manufactured from solid
- Special brake drums

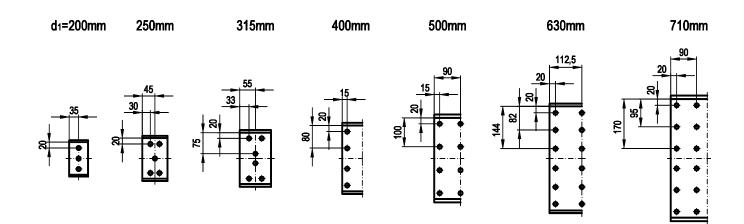
Repair

New line of brake shoes according to DIN 15 435 part 2 and of special brake shoes. New bonding and riveting with linings according to DIN 15 435 part 3 or with special linings for brake shoes with special measures.


If you have brake shoes where the lining must be exchanged, send us your brake shoes and we will take care about it.


IBS Intelligent Brake Systems Nielandstraße 53 58300 Wetter/Ruhr Phone +49 (0) 2335 8012-0 Fax +49(0)23358012-12 E-Mail: info@ib-systeme.de Web: www.ib-systeme.de


Chapter 04 Page 1 of 9


Linings acc. to DIN 15 435 for Drum brakes

(IBS

All dimensions in [mm]

b2	c1	d1	I1	c2	I2
70	8	200	132	2	15
90	8	250	162	2	15
110	10	315	204	3	18
140	10	400	256	3	18
180	12	500	320	3	20
225	12	630	400	3	20
255	15	710	452	3	22

Page 2 of 9

Lining Type HWN for Drum brakes

Type HWN

Material description:

Friction material on a caoutchouc/ syntetic resin and metal fibre coating, flexible, asbestos free

Recommended application:

Drum brake linings for agriculture and industrial applications

Technical data:

Average dynamic. friction coefficient µ (dry)_____ ca. 0.43

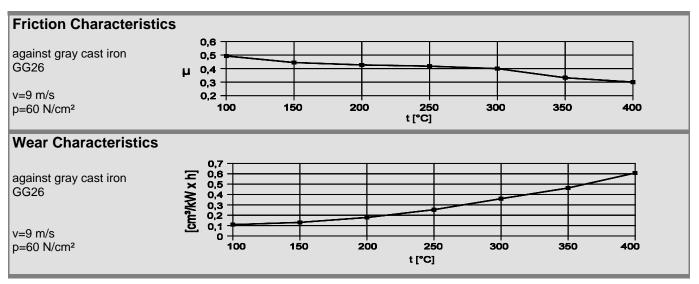
Recommended operational demand:

a) surface pressure - [daN/cm ²]	_5 - 100
b) sliding rate - [m/s]	< 20

Max. permissible temperature [°C]:

a) for continuous operation_	 280
b) temporary	350

Phisical properties:


Density (20°C) [g/cm³]	2,20 ± 10%
permissible compression stress [N/mm²]	8
permissible tensile stress [N/mm ²]	2
permissible shearing stress [N/mm²]	3

Remarks:

The specified temperatures are average friction surface temperatures on the lining or drum surface. The maximum permissible temperature (short duration) is meant the peak value which may occur in an emergency situation. If the friction material is subjected to this temperature for more than two minutes, permanent damage to the material can result. Moreover an extremely high reduction of the friction coefficient is possible when this temperature limit exceeded. Generally the maximum temperature in the area where the linings are fastened should not exceed 250°. Colour variations result from the use of natural raw materials and cannot be avoided.

Note on machining:

The material can be machined using conventional cutting tools. For work on a large scale, the use of carbide tipped tools is recommended. Use dust extractors when machining.

Page 3 of 9

Lining Type HWN-N

for Drum brakes

Type HWN-N

Material description:

Friction material on a caoutchouc/ syntetic resin, without metal fibre coating, flexible, asbestos free

Recommended application:

Drum brake linings for agriculture and industrial applications

Technical data:

Average dynamic. friction coefficient µ (dry) ca. 0.40

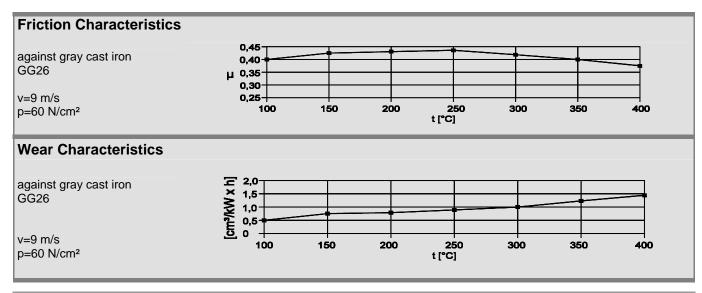
Recommended operational demand:

a) surface pressure - [daN/cm²]	5 - 100
b) sliding rate for continuous operation- [m/s]	< 35

Max. permissible temperature [°C]:

a) for continuous operation	250
b) temporary	400

Phisical properties:


Density (20°C) [g/cm ³]	1,71 ± 10%
permissible compression stress [N/mm ²]	8
permissible tensile stress [N/mm ²]	5,2
permissible shearing stress [N/mm ²]	3

Remarks:

The specified temperatures are average friction surface temperatures on the lining or drum surface. The maximum permissible temperature (short duration) is meant the peak value which may occur in an emergency situation. If the friction material is subjected to this temperature for more than two minutes, permanent damage to the material can result. Moreover an extremely high reduction of the friction coefficient is possible when this temperature limit exceeded. Generally the maximum temperature in the area where the linings are fastened should not exceed 250°. Colour variations result from the use of natural raw materials and cannot be avoided.

Note on machining:

The material can be machined using conventional cutting tools. For work on a large scale, the use of carbide tipped tools is recommended. Use dust extractors when machining.

Page 4 of 9

Lining Type HWN-12

for Drum brakes

Type HWN-12

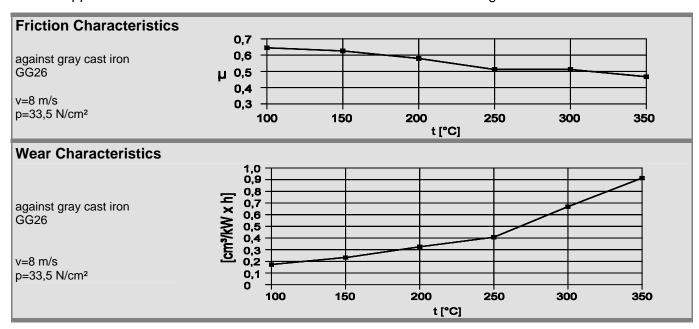
Material description:

Rolled friction material on a caoutchouc/ syntetic resin with metal fibre coating, asbestos free

Recommended application:

Small drum brake linings for agriculture and industrial applications.

Technical data:


Average dynamic friction coefficient μ (trocken)	ca. 0,45
Recommended operational demand: a) surface pressure - [N/cm²] b) sliding rate - [m/s]	
Max. permissible temperature [°C]: a) for continuous operation b) temporary	< 300 < 400
Phisical properties:	
Density (20°C) [g/cm³]	2,30 ± 10% 8 4 4

Remarks:

The specified temperatures are average friction surface temperatures on the lining or drum surface. The maximum permissible temperature (short duration) is meant the peak value which may occur in an emergency situation. If the friction material is subjected to this temperature for more than two minutes, permanent damage to the material can result. Moreover an extremely high reduction of the friction coefficient is possible when this temperature limit exceeded. Generally the maximum temperature in the area where the linings are fastened should not exceed 250°. Colour variations result from the use of natural raw materials and cannot be avoided.

Note for machining:

The material can be machined using conventional cutting tools. For work on a large scale, the use of carbide tipped tools is recommended. Use dust extractors when machining.

Page 5 of 9

Lining Type HKL for Drum brakes

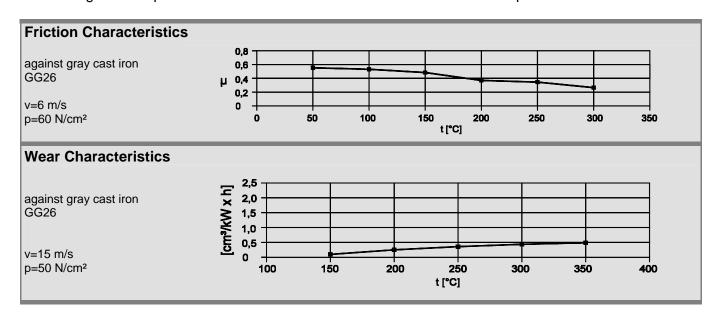
Type HKL

Material description:

Woven brake lining, impregnated, light brown, asbestos free

Recommended application:

Cranes, windlass, band brakes, general drilling facility

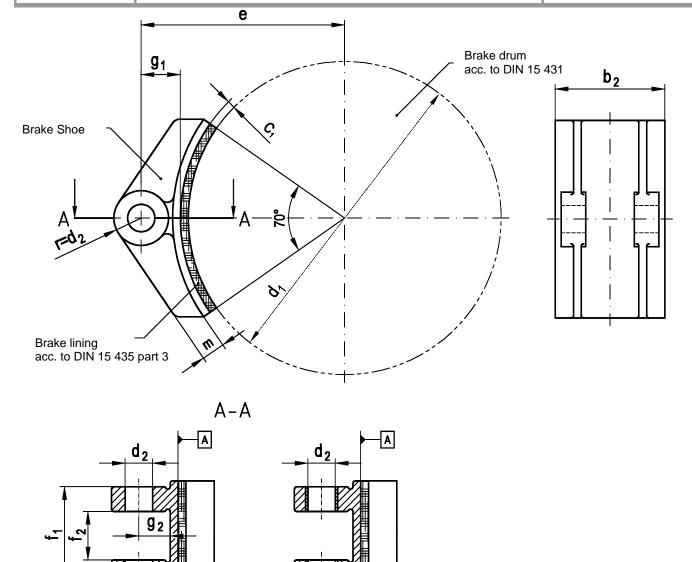

Technichal Data:

Average, dynamic friction of coefficient μ (dry)	ca. 0,39
Recommended operational demand: a) surface pressure -pmax [N/cm²] b) sliding rate - [m/s]	
Max. permissible temperature [°C]: a) for continuos operation b) temporary	200 400
tensile stress (ISO527 [MPa])specific weight (DIN 53479 [g/cm³])bonding_	

Not approved for oiled linings. Occasional oil drops don't harm the material.

The maximal admissible forces should not appear simultaneously. A warranty cannot be granted, because of miscellaneous fields of application.

From lining tests acquired friction coefficients should not unchecked used in praxis.



Page 6 of 9

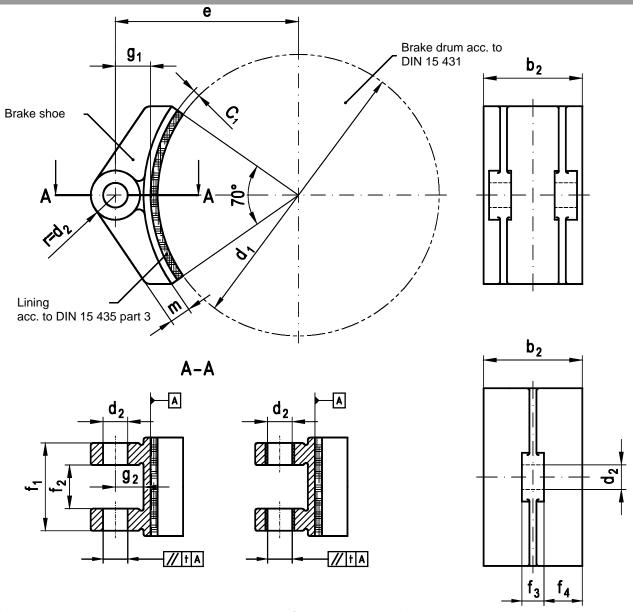
Brake Shoes acc. to DIN 15 435

for Drum brakes

All dimensions in [mm]

d ₁	b ₂	c ₁	d ₂	е	f ₁	f ₂	g ₁	g ₂	m	t	weight [kg]
			D10		0 -0,2	+0,2 0			max.		
200	70	8	20	140	65	35	32	24	17	0,1	0,5
250	90	8	25	170	80	40	37	29	22	0,1	0,8
315	110	10	30	212	100	50	44,5	34,5	25	0,15	1,4
400	140	10	35	260	125	62	50	40	30	0,15	2,1
500	180	12	40	320	160	80	58	46	33	0,15	3,9
630	225	12	45	390	200	100	63	51	38	0,2	5,7
710	255	15	50	440	224	112	70	56	40	0,2	8,6

// | t | A

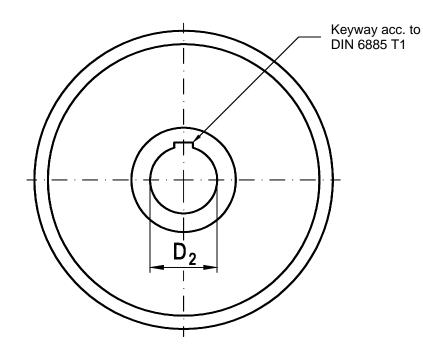

Design A1 C Brake shoes made from cast aluminium w/ steel bushings, without holes (to bond the linings) Design A2 C Brake shoes made from cast aluminium w/steel bushings, with rivet holes (to rivet the lining)

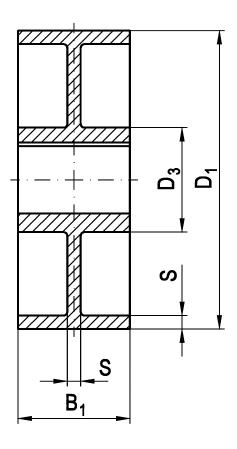
// | † | A

Application Brake Shoes for Brake drums

Page 7 of 9

Please insert the dimensions you need in the following schedule, according to the above- mentioned drawing:


Design	☐ Single-webbed	□ Double-webbed
d ₁		
b ₂		
C ₁		
d_2		
е		
f_1		
f ₂		
f ₃		
f ₄		
g 1		
g ₂		
m _{max.}		


Page 8 of 9

Brake drums acc. to DIN 15 431

for Drum brakes

All dimensions in [mm]

D1	B1	Pilot hole	Finish bored	D3	S design	weights (kg) design		3 d (3)		Mass moment of inertia J (kgm²)		max. RPM
		D2	D2 max ^{H7}		1, 2	1	2	Ausf. 1	Ausf. 2	min ⁻¹		
160	60	18	40	65	8	3,6	3,9	0,013	0,014	4200		
200	75	22	50	80	10	6,9	7,5	0,038	0,042	3350		
250	95	27	60	95	12	12,9	14,0	0,114	0,124	2700		
315	118	37	80	125	15	26,0	28,0	0,358	0,390	2150		
400	150	51	90	140	18	48,0	52,0	1,110	1,210	1690		
500	190	66	100	160	20	84,0	91,0	3,090	3,370	1350		
630	236	66	110	170	25	153,0	167,0	9,520	10,400	1070		
710	265	85	120	190	30	228,0	249,0	18,200	19,800	950		
800	300	95	140	220	40	375,0	410,0	37,900	41,300	840		

Design 1: Casting

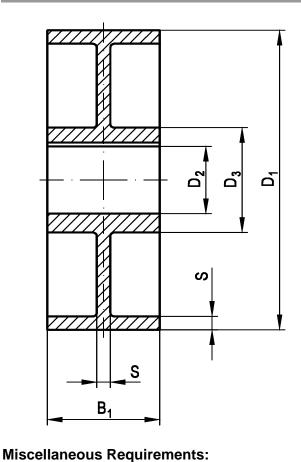
material spheroidal cast iron

GGG 40

manufactured from solid

Design 2: Steel

material C 45 or St 52-3 manufactured from solid


Brake drums D 75, 100 and 125 as well as special design on request.

Order example:

5 Brake drums D 400 design 1 material GGG40, finish bored with D 60 and keyway.

Application for Brake drums acc. to DIN 15 431

Brake drum acc. to DIN 15 431

Required Data Diameter D₁: Diameter D₂: _____ Tolerance: _____ Diameter D₃: _____ Web thickness S:_____ Bright B₁: _____